蜜臀98精品国产免费观看,日本老熟妇乱子伦视频,亚洲AV无码成人精品区在线观看 ,精品一区二区无码AV

免費熱線:+86-400 882 8982 中文 ENG

一大波人工智能芯片將在2018上市

深度神經(jīng)網(wǎng)絡就像遙遠地平線上的海嘯一樣涌來。

鑒于該技術仍在演變的算法和應用,目前還不清楚深度神經(jīng)網(wǎng)絡(DNNs)最終會帶來什么變化。但是,迄今為止,它們在翻譯文本、識別圖像和語言方面所取得的成就,清楚地表明他們將重塑計算機設計,而這種變化正在半導體設計和制造方面發(fā)生同樣深刻的變化。

量身定制的第一批商用芯片將于今年上市。由于訓練新的神經(jīng)網(wǎng)絡模型可能需要幾周或幾個月的時間,因此這些芯片可能是迄今為止制造的最大的,因此也是最昂貴的大規(guī)模商用集成電路芯片。

今年的行業(yè)可能會看到來自創(chuàng)業(yè)公司Graphcore的一款微處理器,該公司不使用DRAM,而是來自競爭對手Cerebras Systems的晶圓級集成開拓先鋒。英特爾收購的2.5-D Nervana芯片已經(jīng)在生產(chǎn)樣片,其他十幾個處理器正在開發(fā)中。同時,從Arm到西部數(shù)據(jù)(Western Digital)的芯片公司正在研究內(nèi)核,以加速深層神經(jīng)網(wǎng)絡的推理部分。


“我認為(2018年)將是一場即將到來的派對。”加州大學伯克利分校名譽教授大衛(wèi)·帕特森(David Patterson)表示:“我們剛剛開始看到許多公司正在評估一些想法?!?/p>

這個趨勢非常明顯,帕特森和合著者約翰·亨尼西(John Hennessey)在上個月發(fā)表的關于計算機的開創(chuàng)性文本的最新版本中,為它寫了一個新的篇章。作者對內(nèi)部設計提供了深入的見解,例如Patterson為其貢獻的Google TensorFlow處理器(TPU),以及最新Apple和Google智能手機芯片中的Microsoft Catapult FPGA和推理模塊。


“這是計算機體系結(jié)構(gòu)和封裝的復興?!?Patterson說:“明年我們會看到比過去十年更有趣的電腦?!?/p>

深度神經(jīng)網(wǎng)絡的興起在過去幾年里把風險投資的資金帶回到了半導體領域。 “EE Times(電子工程專輯美國版)”最新推出的初創(chuàng)公司評選項目“Silicon 60”中,列舉了七家初創(chuàng)公司,其中包括兩個鮮為人知的名稱:寒武紀科技Cambricon Technologies(北京寒武紀科技)和Mythic Inc.(Austin,Texas)。


“我們看到基于新架構(gòu)的新創(chuàng)公司激增。我自己跟蹤了15到20家......過去10到15年中,在任何一個細分領域中半導體行業(yè)都不曾有超過15家的半導體公司同時涌現(xiàn)的事情”,企業(yè)家Chris Rowen說。他從Cadence Design Systems離職后,成立了一家公司Cognite Ventures,專注于神經(jīng)網(wǎng)絡軟件。

“Nvidia由于其強大的軟件地位,將難以與高端服務器進行訓練的競爭。如果你去追求智能手機市場你會覺得自己瘋了,因為你必須在很多方面都做得出色。不過在高端或是低端的智能手機市場,還是會可能有一些機會?!绷_文說。

市場觀察家Linley集團負責人Linley Gwennap表示,Nvidia在最新的GPU(Volta)方面做得非常出色,他們調(diào)整了對DNN的速度培訓。 “但我當然不認為這是最好的設計,”Gwennap說。


Gwennap說,Graphcore(英國布里斯托爾)和Cerebras(加利福尼亞州Los Altos)是培訓芯片最多的兩家初創(chuàng)公司,因為他們籌集的資金最多,而且似乎擁有最好的團隊。由Google前芯片設計師創(chuàng)立的初創(chuàng)公司Groq聲稱,它將在2018年推出一款推理芯片,在每秒的總操作和推論中都會以四倍的優(yōu)勢擊敗競爭對手。

2018-01-24_090524.png

英特爾的Nervana是一個大型線性代數(shù)加速器,位于硅中介層上,緊鄰四個8-GB HBM2存儲器堆棧。消息來源:Hennessy和Patterson著寫的《計算機體系結(jié)構(gòu):一種定量方法》

Intel的Nervana,被稱為Lake Crest(上圖),是最受關注的定制設計之一。它執(zhí)行16位矩陣操作,數(shù)據(jù)共享指令集中提供的單個5位指數(shù)。

與Nvidia的Volta一樣,Lake Crest邏輯器件位于TSMC的CoWoS(襯底上芯片上芯片)中介層上,緊鄰著四個HBM2高帶寬存儲器堆棧。這些芯片被設計成網(wǎng)狀,提供五到十倍于Volta的性能。

雖然去年微軟在DNN上使用了FPGA,但Patterson仍然對這種方法持懷疑態(tài)度。 “你為(FPGA)的靈活性付出了很多代價。編程真的很難,”他說。

Gwennap在去年年底的一項分析中指出,DSP也將發(fā)揮作用。 Cadence、Ceva和Synopsys都提供面向神經(jīng)網(wǎng)絡的DSP內(nèi)核,他說。

雖然芯片即將問世,但是架構(gòu)師們還沒有決定如何去評估它們。


就像RISC處理器的早期,Patterson回憶說,“每個公司都會說,'你不能相信別人的基準,但是你可以相信我的',那不太好。

那時,RISC供應商在SPEC基準測試中進行了合作?,F(xiàn)在,DNN加速器需要自己定義的測試套件,涵蓋各種數(shù)據(jù)類型的訓練和推理以及獨立的或是集群的芯片。


聽取了這個呼吁,交易處理性能委員會(TPC)是一個由20多個頂級服務器和軟件制造商組成的小組,12月12日宣布已經(jīng)組建了一個工作組來定義機器學習的硬件和軟件基準。 TPC-AI委員會主席Raghu Nambiar表示,目標是創(chuàng)建與加速器是CPU還是GPU的測試。但是,這個團隊的成員名單和時間框架還處于不斷變化之中。

百度公司于2016年9月發(fā)布了一個基于其深度學習工作負載的開放源代碼基準測試工具,使用32位浮點數(shù)學進行訓練任務。它在六月份更新了DeepBench以涵蓋推理工作和16位數(shù)學的使用。


哈佛研究人員發(fā)表的Fathom套件中定義的八個AI工作負載支持整數(shù)和浮點數(shù)據(jù)。帕特森說:“這是一個開始,但是要獲得一個讓人感覺舒適的全面基準測試套件,還需要更多的工作?!?/p>

“如果我們把努力做成一個好的基準,那么所有投入工程的錢都會花得值得。”他說。

除了基準之外,工程師需要跟蹤仍在演變的神經(jīng)網(wǎng)絡算法,以確保他們的設計不會被束之高閣。


高通公司下一代核心研發(fā)總監(jiān)Karam Chatha表示:“軟件總是在變化,但是你需要盡早把硬件拿出來,因為它會影響軟件- 你不得不催促讓它發(fā)生。到目前為止,移動芯片供應商正在驍龍SoC的DSP和GPU內(nèi)核上運行神經(jīng)網(wǎng)絡工作,但一些觀察家預計,它將為機器學習定制一個新的模塊, 放在2019年7納米驍龍SoC里。

2018-01-24_090539.png

Patterson說:“市場決定哪種芯片最好。 “這是殘酷的,但這是設計電腦讓人興奮之處。 ”

早期進入的玩家已經(jīng)有機會進入到游戲中。

例如,F(xiàn)acebook最近證明,通過大幅增加打包到所謂批量大小的功能數(shù)量,可以將培訓時間從一天縮短到一小時。對于試圖在本地SRAM中運行所有操作的Graphcore來說這可能是個壞消息,消除了外部DRAM訪問的延遲,同時也限制了它的內(nèi)存占用。


“他們?yōu)樾∨繑?shù)據(jù)包而設計的,但幾個月前的軟件結(jié)果表明你想要一個大批量數(shù)據(jù)包。這表明事情變化的速度有多快,“帕特森說。


另一方面,雷克斯電腦(Rex Computing)認為正在迎來一個有利的機遇。該初創(chuàng)公司的SoC最初是為高性能服務器設計的,它使用了一種新穎的暫存器內(nèi)存。 Rex的方法消除了在虛擬頁面表中緩存數(shù)據(jù)的需求,這是GPU使用的一種技術,增加了他們的延遲,聯(lián)合創(chuàng)始人Thomas Sohmers說。

因此,Rex芯片比現(xiàn)在的GPU要好得多,特別是在處理流行的矩陣/矢量運算神經(jīng)網(wǎng)絡時,他說。新創(chuàng)公司計劃6月份推出16納米的256核的SoC,希望能提供256 Gflops / watt的運算能力。

與此同時,研究人員正在嘗試從32位到單位浮點和整數(shù)數(shù)學的一切可能,以找到最有效的方法來計算神經(jīng)網(wǎng)絡結(jié)果。他們似乎同意的一點是,最好不要在精確度級別之間轉(zhuǎn)換。


編譯:Mike Zhang

文章來源: eMedia Asia Ltd.


關注行業(yè)動態(tài),了解產(chǎn)業(yè)信息,以實現(xiàn)與時俱進,開拓創(chuàng)新,穩(wěn)步發(fā)展。


標簽:   人工智能 芯片
鸡西市| 依安县| 五寨县| 永宁县| 吴堡县| 石河子市| 德州市| 博野县| 淳化县| 杨浦区|